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Classical solutions of two- and four-dimensional a-models 
interpolating between instanton and meron configurations 

Avinash Kharet 
Institute of Physics, A/105 Saheed Nagar, Bhubaneswar-751007, India 

Received 16 July 1979, in final form 13 December 1979 

Abstract. We obtain an infinite class of exact time-dependent solutions of the classical two- 
and four-dimensional u-models. In Euclidean space these solutions interpolate continu- 
ously between the corresponding meron and instanton solutions. 

1. Introduction 

Recently the a-model in both two and four dimensions has received a lot of attention 
(Schroer 1977, Gava and Jengo 1978, de Alfaro et a1 1978, Ferrara et a1 1978), the 
main motivation being the similarities-like asymptotic freedom, conformal invari- 
ance, etc-between two-dimensional a-model and four-dimensional Yang-Mills (YM) 
theories (Belavin and Polyakov 1975, Migdal 1976). Another motivation is that the 
two-dimensional a-model is equivalent to the two-dimensional Heisenberg ferro- 
magnet. For example, Gross (1978) and, particularly, de Alfaro et a1 (1978) have 
discussed both meron and instanton solutions of a Euclidean O(3) a-model in two 
dimensions. The latter authors have also generalised these results and have obtained 
instanton and meron solutions of the four-dimensional nonlinear O(5) a-model in the 
case when the Lagrangian has fourth-order derivative terms. It is of course well known 
that these theories are marred by the problem of ghost states, but a recent paper 
(Narnhofer and Thirring 1978) indicates that under special conditions observable 
quantities may not be affected by ghosts. 

At this stage it is worthwhile to point out that for four-dimensional YM theories one 
can obtain a class of solutions which continuously interpolate between the instanton and 
meron solutions (Schechter 1977, Luscher 1977, Cervero et a1 1977, Wada 1978). It is 
then natural to enquire if one can derive similar solutions for the a-model. The answer 
to this question is not very obvious, because the two models differ in an important 
respect, i.e. the lack of multiple or &vacuum in the a-model (Bitter et a1 1979). The 
purpose of this paper is to exhibit a class of solutions of both two- and four-dimensional 
a-models which interpolate continuously between the instanton and meron solutions 
found previously (de Alfaro et a1 1978). 

The plan of the paper is as follows. In 9 2 we obtain the general solutions of the 
two-dimensional O(3) a-model and discuss their symmetry properties. In 9 3 we do a 
similar job for the four-dimensional O(5) a-model. Since there may be a problem of 
ghost states with this Lagrangian, it may be worthwhile to enquire if the standard 
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four-dimensional r-model possesses instanton and meron solutions. In P 4 we show 
that this is possible provided a quartic self-interaction term is added to the O(4) 
U-model. 

2. Solutions of two-dimensional a-model 

Following de Alfaro et al (1978) we start with the Lagrangian density (with Euclidean 
metric) 

2=4Ma %/#h-im(xM:-l), (2.1) 

where &(xl, x2) is a three-component unit vector and m(x) is a multiplier field. The 
equations of motion which follow from here are 

Using ( 2 . 2 ~ )  and (2.26) one has 

n4a = (40 cl 40% 

(2.2u) 

(2.2b) 

(2.3) 

Generalsolutions. Remembering that equation (2.3) is conformal invariant, we start 
with the ansatz 

f being some arbitrary function of x2, Substituting this ansatz in equation (2.3) we find 
that f ( x 2 )  must satisfy the equation 

4x4y  + 4X2f' -t- 4X2ff2/( 1 -f2) = f( 1 - f 2 ) ,  (2.5) 

where f' = df(x2)/dx2. On using x 2  = e' this equation reduces to 

whose solution is known to be (Murphy 1960) 

f(x2) = dn(log(x2)'/21k), (2.7) 

where dn(y 1 k )  is a Jacobi elliptic function. 

tions. First notice that, in the limit k + 0, f(x2) goes to 1, so that 
Let us now show that this solution contains both instanton and meron configura- 

which is the meron solution of de Alfaro et a1 (1978). On the other hand, as k + 1 we 
obtain 

f ( x 2 )  = ~ech[ log(x~) ' /~]  = 2 ( ~ ~ ) ' / ~ / ( 1 +  x 2 ) ,  
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so that 

(2.9) 

which is the u-model instanton solution. It must be pointed out here that anti-solutions 
can be obtained from the above solutions simply by changing q5z + -&, the only 
consequence being that they will have opposite topological charge densities compared 
with the usual ones. The infinite class of intermediate solutions f(xz) for 0 < k < 1 
oscillate around the meron configuration (f = 1). The physical meaning of these 
configurations is not quite clear. It is likely that, as for the meron solution, they may also 
be related to quark confinement. 

Symmetry properties of the general solution. As has been shown by de Alfaro et a1 
(1978), the meron solution (2.8) is invariant under an O(2) 0 O(2) group, where one 
O(2) group is generated by the two-dimensional dilatation generator D(D = ix . a), 
while the other corresponds to the complete (space plus internal) two-dimensional 
rotation. On the other hand, the instanton solution (2.9) is invariant under the O(3) 
group generated by complete three-dimensional rotations. It is then natural to enquire 
about the symmetry properties of the general solutions (2.7). Using D = ix . a it is easy 
to see that, for the solution (2.7), 

~4~ = [ - i ~ ~ k / ( x ’ ) ~ ’ ~ ]  sn cn, D& # 0. (2.10) 

On the other hand, for the general solutions (2.7)) 

(MlZ + &z)4e = 0, (2.11) 

where 

(2.12) 

In other words, the general solutions (2.7) are invariant under a complete two- 
dimensional rotation group O(2). 

Energy-momentum tensor. Using the standard definition of traceless, divergence- 
less e,, given by 

e,, = - 3 ~ , u ( a A ~ a ) z + a a , ~ a  a,4,, (2.13) 

it is straightforward to show that, for the general solutions (2.7), 

e& I k )  = ( I  - k)e;F”, (2.14) 

where 

CY = (1/2X2)(S,, -2x,x,/x2). (2.15) 

It is amusing to note that a similar relation also exists for general solutions of 
four-dimensional YM theories. It is striking that the e,, for different values of k are 
simply related to each other. From here it is also clear that all these solutions have zero 
momentum. It also follows from (2.14) that e,, = 0 for instanton solution (2.9). 

Action. Using solution (2.7) in equation (2.1), it follows that 

2= (1/2x2)[2 dn2(log(xZ)1’z/ k )  -(1- k ) ] .  (2.16) 
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Needless to say that in the limit k + 0(1) we obtain the meron (instanton) Lagrangian 
density. These configurations do not lead to well-defined Euclidean action, but, on the 
other hand, one can obtain finite Minkowski action and energy by means of a suitable 
conformal transformation, as has been done by de Alfaro et a1 (1978) for the meron 
configuration. 

Topological charge density. The topological charge density is defined as the 
Jacobian of the mapping 4a (x) of the space-time on the unit sphere: 

(2.17) 
1 

8T D ( X )  = - E ~ ~ ~ E ~ ~  aF4a av4p4,- 

For the general solution (2.7) we find that 

D ( x )  = (k/4m2)cn dn. (2.18) 

As expected, the topological charge Q = D ( x )  d2x is indefinite for these solutions. As 
k + 1, however, we get back Q = 1. 

3. Four-dimensional a-model 

The Lagrangian (with Euclidean metric) that we will consider is given by (de Alfaro 
1978) 

z=;t(a, a”4,)2+Im(x)(4: -I), CY = 1 , .  . . , 5 .  (3.1) 

The reason for considering such a higher-derivative Lagrangian is our insistence that 4a 
be a dimensionless field so that the theory is conformal invariant. After eliminating the 
multiplier field m ( x ) ,  this leads to the equations of motion 

(OY4a = [4P (0)24,14cr. (3.2) 

A nice thing about this four-dimensional model is that the interesting features of the 
two-dimensional a-model-like asymptotic freedom and dynamical generation of 
mass-are also present. 

Proceeding as in the last section, general solutions of (3.2) can be shown to be 

4a = [ x , / ( x ~ ) ~ / ~ ]  dn(log(x2)”2 I k ) ,  a=1 ,  . . . ,  4, 
45 = ksn(log(x2)’/21 k). 

(3.3) 

Needless to say that in the limit k + O(1)  these solutions reduce to the meron (instanton) 
configuration (de Alfaro et a1 1978). For O <  k < 1 the general solutions oscillate 
around the meron solution. These general solutions can be shown to be invariant under 
the O(4) group generated by complete (space plus internal) four-dimensional rotations. 
Note that in this model the meron and instanton solutions are invariant under 
O(4) 0 O(2) and O(5) groups respectively. Further, the energy-momentum tensor for 
these solutions is simply proportional to OE:ron, which is given by de Alfaro et a1 (1978). 
Finally, in this case too, even though the Euclidean energy and action are infinite, the 
corresponding Minkowski answers can be made finite by suitable conformal trans- 
formation. 

It must be made clear here that the problem of ghost states is a serious drawback for 
these higher-derivative theories. Of course it is quite likely that, following Narnhofer 
and Thirring (1978), this problem may be tackled in the near future, but till then many 
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workers will be sceptical of such theories. It may therefore be worthwhile to ask if one 
can obtain general classical solutions of a conventional four-dimensional cr-model. In 
the next section we show that it is possible provided one introduces self-interaction 
between the fields. 

4. Four-dimensional a-model with interaction 

In this section we show that general classical solutions can be obtained of the 
four-dimensional O(4) Lagrangian (with Euclidean metric ++++) 

2 = +a,+a a,+a - $A (+a+a )', (Y = 1 , .  . . ,4 .  (4.1) 
A few comments are in order here. Firstly, notice that, even though + is not 
dimensionless, the coupling constant A is still dimensionless, so that the theory is 
conformal invariant. Secondly, for A > 0 this theory is asymptotically free. One may of 
course object to A > 0, since for A > 0 the theory is inconsistent with positivity (Coleman 
and Weinberg 1973), but then, as has been shown by Brandt (1976), the effective 
potential essentially vanishes in the exact theory due to asymptotic freedom. Thus it is 
quite possible that this theory may get around the positivity difficulty. It may therefore 
be worthwhile to discuss classical solutions of this model. 

The equations of motion are 

- Aq32q3a = 0. (4.2) 

A = (2/A 1 / 2 ) ( x , / x 2 ) f ( x Z ) ~ , a .  (4.3) 

Since +a has dimension one, we start with the ansatz 

Substituting ansatz (4.3) into (4.2), it can be shown that f must satisfy the differential 
equation 

x4frr+x2f'-f(l-f2)=0, (4.4) 

wheref' df(x')/dx'. The solution of this equation is well known to be (Murphy 1960) 

where 0 d k d 1. We will show below that in the limit k + 0(1) these solutions go over to 
the meron (instanton) configuration. In general for 0 < k < 1 these general solutions 
oscillate around the meron configuration. 

Instanton. In the limit k + 1 

f ( x 2 ) = f i s e c h ( l o g x 2 ) = 2 h x 2 / ( 1 + x 4 ) ,  (4.6) 

(4.7) 

(4.8) 

so that 
+a = [4& x , / A  "'(1 + X ~ ) ] S , ~ ,  (Y = 1, * .  . ,4 .  

For the instanton solution (4.7) the Lagrangian density (4.1) takes the form 

2 = 64 ( 1 - 3~ ') ( 1 - x 4)/A ( 1 + x 4)4 

and the corresponding (Euclidean) action is finite, 

A = 2 d4x = 64r2/3A. (4.9) I 
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Meron. In the limit k + 0, f(x2) + 1, so that 

= (2/A 1/21(x,lx2)Sw, 

which is the meron solution. 
For this solution the Lagrangian density can be shown to be 

(4.10) 

3 = 4/Ax4, (4.11) 

so that the Euclidean action is not well defined. However, following the treatment of de 
Alfaro et a1 (1978) this Lagrangian can be improved by means of a conformal 
transformation (combine translation, inversion, translation) to give 

9 = 64a4/A (X - u)"(x + u ) ~ .  (4.12) 

We can now go to the physical Minkowski space by writing x4 = ixo, and orient the 
vector U ,  along the time direction, a, = (0, 0, 0, l), to give a solution which is regular 
everywhere. The total (Minkowski) action A that follows from here is finite and given 
by 

A = 3 d4x = 8 r 3 / A .  I (4.13) 

For the general solutions (4.5) the Lagrangian density (4.1) reduces to 

3=[16/(2-k)2A~4]{(2-k -dn2)dn2+[(2-k)'/2k dn+k2  sncnlsncn}, (4.14) 

where 

The remarks of the previous section about finite Minkowski action also apply here. 

is given by (Callan et a1 1970) 
The improved (traceless, divergenceless) energy-momentum tensor for this model 

(4.15) ecrv = afi4 au4 - 8 , ~  - $(afi a, -  OS,^)^^. 
Using the general solution (4.5) it is not difficult to show that 

e,& I k )  = [(I - k) / ( i  - k /2 )2 ]e ;~ ,  (4.16) 

where 

(4.17) 

As expected 8F,?anton - - 0, and for O< k < 1 the e,, is just a multiple of e;?, Not 
surprisingly the Euclidean energy is infinite, but the Minkowski energy can be made 
finite and non-zero by applying a suitable conformal transformation. In particular we 
find that 

E""'"" = 8rr2/3A. (4.18) 

Following the discussion of the last two sections (see also t'Hooft 1976) it is clear 
that, whereas the instanton and meron configurations are invariant under O(5) and 
O(4) 0 Q(2) groups respectively, the general configurations (4.5) are only invariant 
under the Q(4) group generated by complete four-dimensional rotations. 

2 e;,? = ( ~ / ~ A x ~ ) ( s ~ J  -~x,x,,). 
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